EVALUATION OF THE D-100 HPLC SYSTEM FOR THE DETERMINATION OF GLYCATED HEMOGLOBIN

Paleari R¹, Saibene D², Moia R³, Besozzi M³, Varini M⁴, Pezzo M⁴, Ceriotti F², Mosca A¹

¹ Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi, Milano (MI)

²Laboratorio di Standardizzazione, Servizio Medicina di Laboratorio, Ospedale San Raffaele, Milano (MI) ³Laboratorio di Analisi Cliniche, IRCCS Istituto Auxologico Italiano , Milano (MI)

⁴ Laboratorio Analisi, Ospedale di Suzzara, Suzzara (MN)

Background. The HbA_{1c} testing is set to assume a greater role in the next few years as a consequence of the introduction of HbA_{1c} for the diagnosis in addition to its conventional use for monitoring of diabetic patients, and of the global increasing frequency of diabetes. Accordingly, the methods used for HbA_{1c} determination need to provide excellent performance in terms of analytical quality as well as robustness, usability and throughput. The analytical performance of a new HPLC analyzer, the D-100 System from Bio-Rad Laboratories, has been evaluated

Methods. Precision was tested by using the CLSI-EP5 protocol and measured for 20 working days, 2 runs per day, run in duplicate, on aliquots of frozen blood samples at four different HbA_{1c} levels (30, 47, 62, and 108 mmol/mol). For method comparison, 40 blood samples with HbA_{1c} values well distributed over the measuring interval were analyzed in duplicate according to EP9-A2IR. The following comparison methods were used: Menarini HA 8180, Roche Cobas 501, Sebia Capillarys FP2, Tosoh G8. Trueness was evaluated by analyzing two IFCC value-assigned samples. The influence of two common hemoglobin variants (HbS and HbC) was also evaluated.

Results. Total reproducibility was found to be very good at any HbA_{1c} level tested, with CV values always <2 %, well below the recommended goal for imprecision of CV<3%. Method comparison study proved D-100 results were well correlated with those obtained with other methods and provided the following linear regression (least square) equations (D-100 was considered as y, other methods as x), y=1.000x-1.52, R²=0.995 (D-100 vs Menarini); y=1.014x-2.41, R²=0.993 (D-100 vs Roche); y=0.953x+0.71, R²=0.997 (D-100 vs Sebia); y=0.969 x-1.85, R²=0.998 (D-100 vs Tosoh). With regard to trueness, D-100 presented a bias of -1.2 mmol/mol at HbA_{1c} level of 31.7 mmol/mol and +1.5 mmol/mol at 78.0 mmol/mol respect to the IFCC target values. HbC and HbS were clearly eluted after HbA₀ and not integrated for the calculation of HbA_{1c}.

Conclusions. The Bio-Rad D-100 system is a fully automated, user-friendly, high throughput HPLC system giving accurate and reproducible results. The system showed a reduced hands on time, a simple calibration process, a very good workflow efficiency thanks to the intuitive interface, and an high speed HbA_{1c} assay in 45 sec. Bio-Rad D-100 therefore displays the appropriate characteristics to be used as a routine method in clinical laboratories.